• 采购项目
  • 配套企业库
  • 销量查询
  • 盖世汽车社区
  • 盖世大学堂
  • 盖亚系统
  • 盖世汽车APP
  • 汽车行业AI大模型应用展望(2024版)
  • 2025第六届软件定义汽车论坛暨AUTOSAR中国日
  • 2025第五届中国汽车人机交互与体验设计创新大会
  • 2025第三届AI定义汽车论坛
  • 走进上汽提质增效&创新驱动论坛暨
  • 2025第三届中国汽车及零部件出海高峰论坛
当前位置:首页 > 新技术 > 正文

利用神经网络模型 科尔多瓦大学改善低光照条件下的机器视觉和物体检测

盖世汽车 刘丽婷 2025-01-27 12:00:42

盖世汽车讯 在设计机器人时,例如波士顿动力公司(Boston Dynamics)的拟人机器人Atlas锻炼和分类箱子时,基准标记可帮助它们移动、检测物体并确定其准确位置的指南。它是一种用于估计物体位置的机器视觉工具。乍一看,这种基准标记是扁平的、高对比度的黑白方形代码,大致类似于二维码标记系统,但其优势是可以在更远的距离被检测到。

利用神经网络模型 科尔多瓦大学改善低光照条件下的机器视觉和物体检测

图片来源:期刊《Image and Vision Computing》

在物流方面,屋顶上的摄像头可以使用这些标记自动识别包裹的位置,从而节省时间和成本。到目前为止,该系统的弱点是照明条件,因为经典的机器视觉技术无法准确定位和解码标记,因此在低光照条件下无法发挥作用。

据外媒报道,为了解决这个问题,科尔多瓦大学(University of Cordoba)机器视觉应用研究小组的研究人员Rafael Berral、Rafael Muñoz、Rafael Medina和Manuel J. Marín开发出新系统,首次能够使用神经网络在困难的照明条件下检测和解码基准标记。该论文发表在期刊《Image and Vision Computing》上。



本文共计1000字开通高级账号后继续阅读

登录后获取已开通的账号权益

本文共计1000字开通高级账号后继续阅读

您未开通,请开通后阅读

*特别声明:本文为技术类文章,禁止转载或大篇幅摘录!违规转载,法律必究。

本文地址:https://auto.gasgoo.com/news/202501/27I70417460C409.shtml

文章标签: 前瞻技术
 
0

好文章,需要你的鼓励

微信扫一扫分享该文章