$VideoContentTcplayer$
  • 采购项目
  • 配套企业库
  • 销量查询
  • 盖世汽车社区
  • 盖世大学堂
  • 盖亚系统
  • 盖世汽车APP
  • 2025第六届软件定义汽车论坛暨AUTOSAR中国日
  • 2025第五届中国汽车人机交互与体验设计创新大会
  • 2025第三届AI定义汽车论坛
  • 走进上汽提质增效&创新驱动论坛暨
  • 2025第三届中国汽车及零部件出海高峰论坛
当前位置:首页 > 智能网联 > 正文

UCLA用空间非相干衍射光网络进行复数值线性变换 可应用于自动驾驶汽车自然场景处理

盖世汽车 Fairy 2024-01-25 17:16:00

盖世汽车讯 先进神经网络中的大部分计算包括矩阵向量乘法和卷积计算等线性运算,而且线性运算在密码学中也扮演着重要角色。虽然GPU(图形处理器)和TPU(热接收器装置)等专用处理器可用于执行高度并行的线性运算,但此类设备功耗高,而且电子器件的低带宽还限制了运算速度。但是,光学器件因具有并行性,大带宽以及快速计算速度,更适合用于此类运算。

UCLA用空间非相干衍射光网络进行复数值线性变换 可应用于自动驾驶汽车自然场景处理

UCLA用空间非相干衍射光网络进行复数值线性变换(图片来源:UCLA)

由一组空间工程薄表面构建的衍射神经网络(D2NN)也称为衍射网络,构成了最近兴起的光学计算架构,能以光穿过超薄体积传播的速度被动地执行计算任务。

此类执行特定任务的全光学计算机通过学习其组成的衍射表面的空间特征,以数字化方式被设计。在此类一次性设计流程之后,优化的表面被制成和组装以形成衍射神经网络的物理硬件。

据外媒报道,加州大学洛杉矶分校(UCLA)研发了一种方法,可在空间非相干光照下,用衍射网络进行复数值线性运算。

此前,在同一组研究的已表明,具有足够自由度的衍射网络可以用空间相干光进行任意复值线性变换,且误差可忽略不计。

相比之下,如果矩阵因素定义线性变换是非负实数,此类网络凭借空间非相干光,可以对输入光强度进行任意的线性变换。鉴于目前空间非相干照明光源越来越普遍且更容易获取,人们对利用空间非相干衍射处理器以处理非负值以外数据的需求日益增长。

UCLA的研究人员通过预处理和后处理步骤,将复数展示为一组非负实数,将空间非相干衍射网络的处理能力扩展到复数领域。

研究人员证明,如果设计中有足够数量的可优化的唯相位衍射特征,此类非相干衍射处理器经过设计,可执行任意复数值线性变换,且误差可忽略不计,而且其设计可随输入和输出复数向量空间的尺寸而变化。

研究人员利用空间非相干衍射网络对复数图像进行加密和解密,展示了这种新方案的应用。除了视觉图像加密,此种空间非相干衍射处理器也可以用于其他应用,例如在自动驾驶汽车中对自然场景迅速进行超快速和低功耗处理。

智能网联汽车产业分析月刊

*特别声明:本文为技术类文章,禁止转载或大篇幅摘录!违规转载,法律必究。

本文地址:https://auto.gasgoo.com/news/202401/25I70380908C601.shtml

文章标签: 自动驾驶
 
0

好文章,需要你的鼓励

微信扫一扫分享该文章