• 采购项目
  • 配套企业库
  • 销量查询
  • 盖世汽车社区
  • 盖世大学堂
  • 盖亚系统
  • 盖世汽车APP
  • 高精地图与定位产业报告(2024版)
  • 品牌向上-2025第六届汽车品牌与营销论坛
  • 2025第五届中国汽车人机交互与体验设计创新大会
  • 2025第六届软件定义汽车论坛暨AUTOSAR中国日
当前位置:首页 > 新能源 > 正文

利用创新机器学习模型 伯克利实验室加速发现薄膜电容器材料

盖世汽车 Elisha 2024-12-12 11:22:46
核心提示:该团队开发并训练了一套机器学习模型,即前馈神经网络,以筛选拥有近50000种聚合物的结构库,从而获得最佳性能组合,比如耐高温和强电场、高储能密度和易于合成等。

盖世汽车讯 薄膜电容器是电气化和可再生能源技术的关键部件。据外媒报道,美国能源部劳伦斯伯克利国家实验室(Berkeley Lab)和多家合作机构成功演示了一种机器学习技术,以加速发现薄膜电容器材料。该技术可用于筛选化学结构库(拥有近50000种化学结构),以识别具有破纪录性能的化合物。

利用创新机器学习模型 伯克利实验室加速发现薄膜电容器材料

(图片来源:伯克利实验室)

威斯康星大学麦迪逊分校(University of Wisconsin–Madison)、斯克里普斯研究所(Scripps Research Institute)、加州大学伯克利分校(University of California, Berkeley)和南密西西比大学(University of Southern Mississippi)的其他合作人员贡献了机器学习、化学合成和材料表征方面的专业知识。

伯克利实验室研究人员Yi Liu表示:“为了实现经济高效、可靠的可再生能源技术,人们需要性能比现有材料更好的电容器材料。这项突破性筛选技术将有助于找到这些稀缺材料。”

现在,高温、高功率应用对薄膜电容器的需求迅速增长,如电动汽车、电动航空、电力电子和航空航天等。另外,薄膜电容器也是逆变器中必不可少的元件,这些逆变器可将太阳能和风能发电转换为电网使用的交流电。



本文共计1000字开通高级账号后继续阅读

登录后获取已开通的账号权益

本文共计1000字开通高级账号后继续阅读

您未开通,请开通后阅读

*特别声明:本文为技术类文章,禁止转载或大篇幅摘录!违规转载,法律必究。

本文地址:https://auto.gasgoo.com/news/202412/12I70413018C501.shtml

 
0

好文章,需要你的鼓励

微信扫一扫分享该文章