• 采购项目
  • 配套企业库
  • 销量查询
  • 盖世汽车社区
  • 盖世大学堂
  • 盖亚系统
  • 盖世汽车APP
  • 第六届汽车新供应链大会
  • 品牌向上-2025第六届汽车品牌与营销论坛
  • 2025第五届中国汽车人机交互与体验设计创新大会
  • 2025第六届软件定义汽车论坛暨AUTOSAR中国日
当前位置:首页 > 新技术 > 正文

MIT开发出新算法 可帮助AI系统规避对抗性输入

盖世汽车 刘丽婷 2021-03-17 16:26:53

盖世汽车讯 据外媒报道,麻省理工学院(MIT)的研究人员开发出一种全新深度学习算法,可对所接收的测量数据和输入建立健全的“怀疑”机制,帮助机器在真实、不完美的世界中导航。

文章首席作者及麻省理工学院航空与航天系博士后Michael Everett表示:“尽管目前基于深度神经网络的系统在许多机器人任务中都算很前沿,但在安全关键领域中,由于深度神经网络系统的网络鲁棒性没有正式的保障,所以仍然很危险。一旦传感器输入受到小扰动(如噪声或对抗性实例)通常会改变基于网络的决策,如自动驾驶汽车会因此变换车道。

鉴于上述危险,研究人员已根据这些对抗性输入开发出很多算法建立防御机制。部分对抗性输入还可提供正式的鲁棒性保证或证明。此项工作利用了经验证的对抗鲁棒性,进而为深度强化学习算法开发可靠的在线鲁棒算法。

MIT开发出新算法 可帮助AI系统规避对抗性输入

(图像来源:MIT)

由于存在潜在对抗和噪音,输入空间可能会出现最糟糕的偏差,因此提出的防御措施会在识别和选择鲁棒操作执行期,需要计算状态操作值的保证下限。而且,即使验证者可能因干扰不了解真实状态和最佳操作,最终策略仍可具备解决方案品质保证。”



本文共计1000字开通高级账号后继续阅读

登录后获取已开通的账号权益

本文共计1000字开通高级账号后继续阅读

您未开通,请开通后阅读

*特别声明:本文为技术类文章,禁止转载或大篇幅摘录!违规转载,法律必究。

本文地址:https://auto.gasgoo.com/news/202103/17I70246165C409.shtml

文章标签: 前瞻技术
 
0

好文章,需要你的鼓励

微信扫一扫分享该文章