• 采购项目
  • 配套企业库
  • 销量查询
  • 盖世汽车社区
  • 盖世大学堂
  • 盖亚系统
  • 盖世汽车APP
  • 2025第六届软件定义汽车论坛暨AUTOSAR中国日
  • 2025第五届中国汽车人机交互与体验设计创新大会
  • 2025第三届AI定义汽车论坛
  • 2025第三届中国汽车及零部件出海高峰论坛
当前位置:首页 > 智能网联 > 正文

美国研究人员开创高效的交通管制和可持续能源解决方案

盖世汽车 Elisha 2024-09-20 13:27:41
核心提示:这种基于物理知识和受约束的学习与共形预测的创新结合,有望释放更大型多代理系统的潜力,例如无人机机队或无人驾驶汽车车队,以及电网和风电场等基础设施。

盖世汽车讯 据外媒报道,宾夕法尼亚大学嵌入式计算与集成系统工程研究(PRECISE)中心的团队展开突破性研究工作,有望改变城市交通管理,对可持续城市生活和减缓气候变化产生影响。这项研究由电气与系统工程系(ESE)博士生Nandan Tumu领导,其导师是计算机与信息科学系(CIS)和ESE系教授兼PRECISE中心创始成员Rahul Mangharam。

美国研究人员开创高效的交通管制和可持续能源解决方案

(图片来源:arxiv.org)

当今机器学习方法的一个主要障碍是样本复杂性,即学习算法需要多少数据才能达到适当的性能水平。数据越多,所需的能量就越多,对环境的影响就越大。

为了解决这个问题,Tumu探索更为有效的方法,并发现基于物理知识和受约束的学习可以大幅减少大量采样需求。通过将这种方法与共形预测(一种无分布不确定度量化方法)相结合,Tumu找到了一种有效可靠地控制复杂系统的方法。

这种基于物理知识和受约束的学习与共形预测的创新结合,有望释放更大型多代理系统的潜力,例如无人机机队或无人驾驶汽车车队,以及电网和风电场等基础设施。



本文共计1000字开通高级账号后继续阅读

登录后获取已开通的账号权益

本文共计1000字开通高级账号后继续阅读

您未开通,请开通后阅读

*特别声明:本文为技术类文章,禁止转载或大篇幅摘录!违规转载,法律必究。

本文地址:https://auto.gasgoo.com/news/202409/20I70405617C601.shtml

文章标签: 美国
 
0

好文章,需要你的鼓励

微信扫一扫分享该文章