盖世汽车讯 近年来,基于神经网络的方法已广泛应用于基于摄像头的3D重建中。但在大多数情况下,3D重建仍然需要数百个摄像头视角才能完成。与此同时,虽然传统的光度测量方法可以计算出高精度的重建结果(即使是表面没有纹理的物体),但这些方法通常只能在受控的实验室条件下有效。
据外媒报道,慕尼黑工业大学(Technical University Munich)计算机视觉和人工智能系(Computer Vision and Artificial Intelligence)教授、慕尼黑机器学习中心(MCML)负责人兼慕尼黑数据科学研究所(MDSI)所长Daniel Cremers及其团队共同开发出仅使用2个摄像头视角实现3D重建的方法。
图片来源:Technical University Munich
该方法将表面的神经网络与照明过程的精确模型相结合,该模型能够考虑光吸收以及物体与光源之间的距离。而图像中的亮度可用来确定表面相对于光源的角度和距离。
*特别声明:本文为技术类文章,禁止转载或大篇幅摘录!违规转载,法律必究。
本文地址:https://auto.gasgoo.com/news/202406/25I70396803C409.shtml
 好文章,需要你的鼓励
联系邮箱:info@gasgoo.com
求职应聘:021-39197800-8035
简历投递:zhaopin@gasgoo.com
客服微信:gasgoo12 (豆豆)
新闻热线:021-39586122
商务合作:021-39586681
市场合作:021-39197800-8032
研究院项目咨询:021-39197921