• 采购项目
  • 配套企业库
  • 销量查询
  • 盖世汽车社区
  • 盖世大学堂
  • 盖亚系统
  • 盖世汽车APP
  • AI定义汽车产业报告(2025版)
  • 各国产业概览
  • 2025第八届智能辅助驾驶大会
  • 2025第三届新能源汽车热管理论坛
  • 2025第四届中国车联网安全大会
  • 2025汽车智能玻璃创新技术及应用大会
当前位置:首页 > 新技术 > 正文

俄亥俄州立大学使用边缘计算硬件控制混乱 利用数字孪生模型有望推动计算进步

盖世汽车 刘丽婷 2024-05-11 11:15:25

盖世汽车讯 一项新研究表明,由下一代计算算法控制的系统可以产生更好、更高效的机器学习产品。据外媒报道,俄亥俄州立大学研究人员发现,使用机器学习工具创建表现出混沌行为(chaotic behavior)的电子电路的数字孪生(虚拟副本),成功预测出行为方式并利用该信息得到控制。

俄亥俄州立大学使用边缘计算硬件控制混乱 利用数字孪生模型有望推动计算进步

图片来源:期刊《Nature Communications》

许多日常设备(例如恒温器和巡航控制系统)都使用线性控制器,该控制器使用简单的规则将系统引导至所需值。例如,恒温器就采用此类规则,根据当前温度与所需温度之间的差异来确定对空间进行加热或冷却的程度。

然而,由于这些算法非常简单,它们很难控制表现出复杂行为(例如混乱)的系统。因此,自动驾驶汽车和飞机等先进设备通常依赖于基于机器学习的控制器,这些控制器使用复杂的网络来学习高效运行所需的最佳控制算法。然而,这些算法具有显著劣势,其中最严重的是它们的实现极具挑战性且计算成本昂贵。

该研究的主要作者、俄亥俄州立大学物理学研究生Robert Kent表示,现在,获得高效的数字孪生可能会对科学家开发未来自动驾驶技术的方式产生广泛影响。



本文共计1000字开通高级账号后继续阅读

登录后获取已开通的账号权益

本文共计1000字开通高级账号后继续阅读

您未开通,请开通后阅读

*特别声明:本文为技术类文章,禁止转载或大篇幅摘录!违规转载,法律必究。

本文地址:https://auto.gasgoo.com/news/202405/11I70391932C409.shtml

文章标签: 前瞻技术
 
0

好文章,需要你的鼓励