• 采购项目
  • 配套企业库
  • 销量查询
  • 盖世汽车社区
  • 盖世大学堂
  • 盖亚系统
  • 盖世汽车APP
  • 高通
  • urope-Asia Automobile Innovation Forum
  • 2025第七届金辑奖评选
  • 各国产业概览
  • 2025第八届智能辅助驾驶大会
  • 2025汽车智能玻璃创新技术及应用大会
当前位置:首页 > 新技术 > 正文

东京科技大学发明新框架 减少内存使用量并提高大规模AI图形分析的能源效率

盖世汽车 刘丽婷 2025-06-25 15:44:50

盖世汽车讯 据外媒报道,日本东京科技大学(Institute of Science Tokyo)的研究人员开发出可扩展且高效的图神经网络加速器BingoCGN,能够通过图分区实现实时大规模图推理。这一突破性框架采用创新的跨分区消息量化技术和新颖的训练算法,显著降低了内存需求,并提高了计算效率和能效。

东京科技大学发明新框架 减少内存使用量并提高大规模AI图形分析的能源效率

图片来源: 东京科技大学

图神经网络(GNN)是强大的人工智能(AI)模型,旨在分析复杂的非结构化图数据。在这类数据中,实体表示为节点,实体之间的关系表示为边。GNN已成功应用于许多实际应用,包括社交网络、药物研发、自动驾驶和推荐系统。尽管GNN潜力巨大,但实现对自动驾驶等任务至关重要的实时大规模GNN推理仍然充满挑战。

大型图需要大量内存,这通常会溢出片上缓冲区(即集成在芯片中的内存区域)。这迫使系统依赖于速度较慢的片外内存。由于图数据存储不规律,这会导致内存访问模式不规律,从而降低计算效率并增加能耗。

一个有前景的解决方案是图分区,将大型图划分为较小的图,每个图分配各自的片上缓冲区。随着分区数量的增加,这将导致内存访问模式更加本地化,并且缓冲区大小要求也更小。



本文共计1000字开通高级账号后继续阅读

登录后获取已开通的账号权益

本文共计1000字开通高级账号后继续阅读

您未开通,请开通后阅读

*特别声明:本文为技术类文章,禁止转载或大篇幅摘录!违规转载,法律必究。

本文地址:https://auto.gasgoo.com/news/202506/25I70427762C409.shtml

文章标签: 前瞻技术
 ;
0

好文章,需要你的鼓励

微信扫一扫分享该文章