盖世汽车讯 据外媒报道,麻省理工学院(MIT)计算机科学与人工智能实验室(CSAIL)、微软和康奈尔大学(Cornell University)的科学家们创建出算法“STEGO”,可在完全没有任何人类标签的情况下共同发现和分割对象,乃至像素。
STEGO学习了“语义分割”——想象一下为图像中的每个像素分配标签的过程。语义分割是当今计算机视觉系统的一项重要技能,因为图像可能会被物体弄得杂乱无章。更具挑战性的是这些对象并不总是适合文字框。相对于植被、天空和土豆泥等,算法往往更适用于人和汽车等离散的“事物”。以前的系统可能只是将狗在公园里玩耍的细微场景视为狗,但通过为图像的每个像素分配一个标签,STEGO可以将图像分解为其主要成分:狗、天空、草和它的主人。
为了降低耗时,在没有人类帮助的情况下发现对象,STEGO会寻找出现在整个数据集中的相似对象。然后,它会将这些相似的对象关联在一起,以在它学习的所有图像中构建一致的世界视图。
看世界
可以“看到”的机器对于自动驾驶汽车和医疗诊断预测模型等各种新兴技术至关重要。由于STEGO可以在没有标签的情况下学习,它可以检测不同领域的对象,甚至是人类尚未完全理解的对象。
麻省理工学院电气工程和计算机科学博士生、麻省理工CSAIL的研究附属机构、微软的软件工程师,以及STEGO相关论文的主要作者Mark Hamilton表示:“如果你正在查看肿瘤扫描、行星表面或高分辨率生物图像,若没有专业知识,很难知道要寻找什么物体。在新兴领域,有时甚至人类专家也不知道什么是正确的对象。在这些情况下,我们想要设计一种在科学边界上运行的方法,而不是指望人类在机器之前搞清楚状况。”
*特别声明:本文为技术类文章,禁止转载或大篇幅摘录!违规转载,法律必究。
本文地址:https://auto.gasgoo.com/news/202204/22I70298669C409.shtml
 
联系邮箱:info@gasgoo.com
客服QQ:531068497
求职应聘:021-39197800-8035
新闻热线:021-39586122
商务合作:021-39586681
市场合作:021-39197800-8032
研究院项目咨询:021-39197921
版权所有2011|未经授权禁止复制或建立镜像,否则将追究法律责任。
增值电信业务经营许可证 沪B2-2007118 沪ICP备07023350号